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The nonlinear effects of longitudinal vorticity elements in boundary layers are 
studied via a prototype problem : the development of such vorticity elements from 
initial Gortler vortices in the amplified regime. While a time-dependent, quasi-two- 
dimensional formulation greatly simplifies the computational framework, full three- 
dimensionality of the velocity components is obtained. This temporal analogy for 
spatially developing flows approximates the nonlinear streamwise advection by a 
constant convection velocity, but the strong cross-sectional, advective nonlinearities 
are retained. Such an approximation lacks the stretching effect of the streamwise 
vorticity, since such elements are lifted into regions of higher streamwise velocities. 
That the temporal analogy is a good theoretical (and experimental) approximation 
to real developing flows is shown by a posteriori indications that the streamwise 
vorticity remains weak throughout the nonlinear region (though it has far-reaching 
nonlinear effects in upwelling in the peak region) and that the region of strong 
nonlinearities remains in the cross-sectional plane. 

The aim of this work is to elucidate the nonlinearities producing sites of secondary 
instabilities and turbulence generation. The present mushroom-like computed iso- 
streamwise velocity contours surrounding the peak, as well as the streamwise 
velocity profiles in the peak and valley regions, agree well with experimental 
measurements up to the region of expected wavy secondary instabilities. Three local 
intense vorticity and enstrophy areas are found to be significant and these are 
thoroughly diagnosed. One such intense vorticity region arises from the upwelling of 
existing spanwise vorticity and subsequent spanwise stretching in the outer layers, 
leading to intense local high-shear layers of spanwise vorticity in the vicinity of the 
peak region, as expected. Primarily through the stretching of the vertical vorticity, 
intense vertical vorticity (and associated enstrophy) develop (i) in the shoulder 
regions of the mushroom-like iso-streamwise velocity structures in the outer layers 
of the boundary layer and (ii) in the inner regions of about thirty viscous lengths 
from the wall, close to the base of the mushroom-like structures. Of the three regions 
of intense local ‘free ’ shear-layer vorticity, the vertical vorticity in the inner regions 
near the mushroom stem is dominant. This is entirely consistent with experimental 
observations of sites of high-frequency secondary and fine-scaled wavy instabilities. 
This theoretically/computationally obtained ‘parent flow ’ essentially sets the stage 
for continued studies of its wavy instabilities. In  order to analyse and control the 
shear stress at the wall and nonlinear flow development, the effect of initial 
parameters such as Gortler number, initial amplitudes and wavenumbers is fully 
explored. 

t Present address : Department of Mechanical Engineering, Cairo University, Cairo, Egypt. 
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1. Introduction 
Longitudinal vorticity elements and their nonlinear effects in boundary layers 

play a significant role in the later stages of transition (Stuart 1965), whether they are 
products of the nonlinear stages of Tollmien-Schlichting wave development or of 
initial Gortler vortices (Gortler 1940) arising from concave wall curvature. Initial 
experiments confirming instabilities and transition over concave surfaces were 
performed by Clauser & Clauser (1937) and Liepmann (1943,1945). The importance of 
longitudinal vorticity elements in turbulent boundary layers is now well recognized 
(Kim, Kline & Reynolds 1971 ; Willmarth 1975). The fundamental importance of the 
role of longitudinal vorticity elements in the origin of turbulence in wall-bounded 
shear flows was recognized by Prandtl (1935) quite some time ago. Conceptually, 
Prandtl imagined the existence of weak, longitudinal vortex motions in the form of 
spanwise-periodic, counter-rotating vorticity elements aligned in the streamwise 
direction. Imagining a cross-sectional cut normal to the streamwise direction would 
show that the effect of these elements is to give rise to advecting velocities that 
cause the boundary layer to  shift sideways a t  alternate nodes and to deposit part 
of the low-momentum fluid into the upper unretarded flow regions. This creates 
regions of inflexional velocity profiles that are unstable and could break down into 
secondary motions. Prandtl further remarks, ‘ In  practice i t  is observed that vortices 
produced by the disintegration of an unstable flow multiply, as a rule, very quickly, 
so that once such vortices are present, turbulence soon spreads throughout the whole 
flow. ’ Prandtl (1935) then concludes that, while turbulence could be generated by 
such a phenomenon, ‘no theoretical explanation has hitherto been possible. ’ 

Prandtl’s remarkable insight was confirmed in the 1960s by detailed experiments 
on boundary-layer transition (Klebanoff, Tidstrom & Sargent 1962 ; Kovasznay, 
Komoda & Vasudera 1962; Hama & Nutaant 1963). These experiments are 
discussed by Stuart (1965) in terms of nonlinear development of small disturbances 
arising from plane Tollmien-Schlichting waves upstream. The modulated, longi- 
tudinal vorticity elements arising from TollmienSchlichting waves, however, are 
much more intricate and we refer the reader to recent reviews of this subject (Stuart 
1986; Herbert 1987). 

Stuart (1965), however, shows that the generation of three-dimensional high-shear 
layers within the boundary layer can completely bypass the TollmienSchlichting 
mechanism. He constructed a kinematic model, in the absence of streamwise 
modulation, to elucidate the effect of vorticity advection and stretching in the 
formation of inflexional streamwise velocity profiles in the upper layers of the 
boundary layer. Stuart assumed a time-developing but streamwise-independent flow 
and specified the spanwise periodic longitudinal vorticity elements pertaining to the 
cross-sectional flow. As such, the longitudinal vorticity elements remain passive in 
that they do not exchange energy with the mean motion. The unknown streamwise 
velocity would then be given by a linear equation. The generation of intense high- 
inflexional shear layers a t  the ‘peaks’ was brought out by the characteristic solution 
to  the inviscid problem. In the peak region it is first the vertical velocity associated 
with longitudinal vorticity element that  advects upwards the low-momentum fluid 
and high spanwise vorticity associated with the basic flow, and second the spanwise 
stretching of this advected vorticity by the spanwise velocity associated with the 
upper region of the longitudinal vorticity elements. Stuart (1965) depicts this 
interaction between longitudinal vorticity elements and the basic boundary-layer 
shear in terms of a spanwise perturbation of vorticity elements originally lying in the 
spanwise direction. After a spanwise-periodic perturbation, the vorticity develops 
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into uplifted horseshoe-like vorticity elements at the peak regions. Though a 
kinematic calculation, Stuart (1965) obtained a timescale for high-shear-layer 
development that resembled that found in experiments (Klebanoff et al. 1962). More 
recently, Stuart’s (1965) framework has been extended to a finite-span ‘flat eddy’ by 
Russell & Landahl (1984) and has also been used by Pearson & Abernathy (1984), 
Moore (1985) and Yang (1987) in connection with a single longitudinal vortex and the 
effect of viscosity. The nonlinear features of such problems are discussed by Stuart 
(1987) in the inviscid case where all three components of the flow velocity are 
coupled. The full three-dimensionality of the ‘basic’ flow is, as we shall see, an 
important feature of transition and turbulence generation. 

The longitudinal vorticity elements and their consequences play a significant role 
well beyond the wall-bounded shear-flow transition problem as originally envisioned 
by Prandtl (1935). They have been found to be omnipresent in turbulent boundary 
layers (Kline et al. 1967; Corino & Brodkey 1969; Kim et al. 1971; Willmarth 1975; 
Blackwelder & Kaplan 1976). The formation of high-shear layers there, in fact, is 
part of the cyclic burst-and-sweep process intimately associated with the bursting 
events and fine-grained turbulence generation (Willmarth 1975; Kim et al. 1971 ; 
Blackwelder & Kaplan 1976). More recently, the importance of the vorticity normal 
to the wall associated with nonlinearly modified spanwise periodicity in causing 
secondary instabilities in transition has been emphasized by Swearingen & 
Blackwelder (1987); this is discussed fully in $7 below. 

The strong analogy between the effects of longitudinal vorticity elements in 
transitional and turbulent boundary layers has been pointed out by Blackwelder 
(1983). The analogy is brought out by a scaling using wall variables, i.e. scaling 
lengths and velocities by vlu,  and u, respectively, where v is the kinematic viscosity 
and u, the mean friction velocity. Recently, Swearingen & Blackwelder (1987) 
compared their time-averaged streamwise velocity profile along a single ‘peak ’ 
region that developed from upstream Gortler vortices, and showed the strong 
similarity between their ‘intermediate ’ stage of inflexion velocity profile develop- 
ment, a local flat-plate, transitional profile (Kovasnay et al. 1962) and a local 
profile associated with the ejection event of the turbulent boundary layer (Grass 
1971). The mean turbulent boundary-layer profile was also shown to be similar to the 
streamwise velocity along the peak region at  the mature stages of transition 
(Swearingen & Blackwelder 1987) due to upstream Gortler vortices. Although such 
analogies are most certainly local in nature, they show the role of longitudinal 
vorticity elements in boundary layers to be much more universal than originally 
envisioned by Prandtl (1935), though his mechanisms continue to prevail. From a 
theoretical point of view, it would be helpful to study their role by using the 
dynamical equations from an extension of the kinematic considerations of Stuart 
(1965). The understanding gained from the dynamics could possibly lead to the 
control of the formulation of internal free-shear layers and of the consequential 
generation of turbulence in transitional and turbulent boundary layers. In this case, 
the nonlinear development of longitudinal vorticity elements from upstream Gortler 
vortices is both an appropriate (Blackwelder 1983) and convenient prototype 
problem to study. Longitudinal vorticity elements can always be generated 
mechanically (e.g. Yurchenko 1981) or via an initial concave region, prior to 
studying their effect on transition in boundary layers (Tani & Komoda 1962). The 
technological importance of such studies is amply demonstrated by transition 
problems on turbine and compressor blades (Shigemi, Johnson & Gibbings 1987 ; 
Peerhossaini 1984) and on airfoils (Mangalam et al. 1985; Dagenhart & Mangalam 
1986). 
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Finally, no attempt is made here to review comprehensively all the literature on 
longitudinal vorticity elements and Gortler vortices. We refer to the review by 
Peerhossaini (1985) as well as reviews by Hall (1989) and by Saric (1992). 

2. Discussion of the problem 
Our aim is to address the nonlinear development of longitudinal vorticity elements 

in the boundary layer and the consequential formation of local intense free-shear 
layers,? with emphasis on comparisons with and interpretation of recent quantitative 
experimental measurements (e.g. Ito 1980, 1985; Aihara & Koyama 1982a, b ;  
Aihara, Tomito & Ito 1985 ; Swearingen & Blackwelder 1987). Experimentally, the 
primary disturbance has a streamwise developing structure that is independent of 
time, whereas the secondary instabilities are modulated in time and in the 
streamwise distance (Swearingen & Blackwelder 1987). In this paper we concentrate 
on the nonlinear development of the primary structure. 

To this end, longitudinal vorticity elements developing from initial Gortler 
vortices are the subject of our study. Gortler vortices are themselves longitudinal, 
but they require sufficient concave-wall curvature to overcome the viscous 
retardation of their incipient existence. Experimentally, such vortices almost always 
correspond to the amplified regime (Tani & Aihara 1969; Tani 1962; Bippes 1972; 
Peerhossaini 1984, 1985; Babenko & Yurchenko 1980; Winoto & Crane 1980; 
Yurchenko, Babenko & Kozlov 1979; Wortmann 1969), according to the linear 
theory (e.g. Herbert 1976; Smith 1955; Floryan & Saric 1982), and once established, 
they persist even on flat walls (Peerhossaini & Wesfreid 1987). Theoretically, for 
amplified disturbances, the Reynolds shear-stress conversion mechanism plays the 
dominant role in amplifying and strengthening the developing disturbance 
downstream ; the concave-curvature effect, on the other hand, except for its incipient 
role, has almost a secondary effect downstream. 

Herbert (1976), Floryan & Saric (1982) and Hall (1983) have reviewed the 
linearized theory of Gortler vortices. Unlike the situation in which Taylor vortices 
are confined between rotating cylinders, where the linear theory enjoyed ex- 
perimental verification from the outset (Taylor 1923), controversies and incon- 
sistencies beset the linear parallel-flow theory for Gortler vortices. It appears that 
‘accurate ’ calculations of the neutral curve, based on Giirtler (1940) theory, place the 
minimum GBrtler number at essentially zero dimensionless spanwise wavenumber 
(Hammerlin 1955 ; Herbert 1976; Floryan & Saric 1982). There are large discrepancies 
between the linear theories, which are based on ordinary differential equations that 
neglect the streamwise evolution history and that for the developing boundary layer 
(Hall 1983). 

The existence of a neutural curve in real, developing boundary layers is, in fact, 
open to question. Hall (1983) shows that, with appropriate scaling, even the linear 
problem is an initial-value problem governed by parabolized partial differential 
equations. The streamwise distance plays the role of ‘time ’. The neutral condition 
would be obtained a t  a particular streamwise location where the total kinetic energy 
of the disturbance reaches a maximum. As an initial-value problem, the solution (and 
hence the growth rate) is naturally sensitive to the initial parameters and energy 
levels and possibly even the location where the initial condition is applied. The 
neutral curve from the initial-value problem attains a minimum Gortler number at  
a finite wavenumber (Hall 1983). However, in the context of developing boundary 

t We are aware of similar work by W. Liu & J. A. Domaradzki and C.-W. Park & P. Huerre 
which, hopefully will be available in the archival literature soon. 



Longitudinal vorticity elements in boundary layers 619 

layers, the search for the neutral curve is no longer meaningful, as it would be for 
parallel flow (Hall 1983). The ‘neutral condition’, which is where the disturbance 
energy reaches a maximum, occurs a t  only one station (or stations) along the 
streamwise distance. In fact, the overall streamwise evolution of the energy as well 
as of the local states is central to the initial-value problem. This characterization is 
apparently lost in the parallel-flow problem. 

The Gortler number-wavenumber plane is nevertheless an important guide for 
experimental measurements that involve developing boundary layers (Floryan & 
Saric 1982; Hall 1983; Swearingen & Blackwelder 1987). In terms of the local 
momentum thickness 8, the Gortler number is defined as G, = U, 8/u(8/R)i,  where U, 
is the free-stream velocity, v the kinematic viscosity and R the radius of concave wall 
curvature (essentially the Taylor number, Taylor 1923) ; this can be recast into the 
form G, = A,(f?a)!, where a is the spanwise wavenumber and A,  =Re,(&)-!, where 
Re, = U,,R/v is the curvature Reynolds number. It is clear that, for a robust, 
constant wavenumber observed in an experiment, the local Gortler number increases 
as & for a given experiment, with the coefficient A,  a constant characterizing 
particular experiments in the (Q,, (a8))-plane (Swearingen & Blackwelder 1987). 
However, Swearingen & Blackwelder define the coefficient A using the wavelength h 
= 2n/a, so that A,  = Re,(h/R)i. Although statistically their experiments gave A x 
2.30 cm (corresponding to AA x 650), the actual quantitative data to which we 
compare our results were for h x 1.80 cm, for which A ,  !z 460. This choice is because 
the detailed measurements were made within the h = 1.80 cm longitudinal vorticity 
elements; in addition, computed results for h x 2.30 cm gave poor comparisons with 
h x 1.80 cm measurements. The experiments of Tani (1962) lie in the range A,  x 
650-1890; in those of Bippes (1972), A,  x 210; in those of Aihara & Koyama (1982a, 
b) ,  A ,  x 235, and in that of I to (1985), A,  x 345. The observed incipient Giirtler 
instabilities occur without exception in the ‘amplified region’ and follow a A,  or A ,  
= constant line in their nonlinear development. For the unsteady boundary layer on 
the interior wall of a suddenly stopped rotating cylinder, Kozlov, Glushko & 
Nikishova (1981) obtained A ,  x 440. 

Hall (1982a, b ) ,  Hall & Lakin (1988a, b)  and Hall & Seddougui (1980) study 
various aspects of Gortler vortices in developing boundary layers by employing 
asymptotic analysis with the spanwise wavelength relative to the boundary-layer 
thickness taken as a small parameter. In developing the linear theory, Hall ( 1 9 8 2 ~ )  
concentrated on the upper right-hand branch of the neutral curve and showed that 
in this limit a unique neutral curve is obtained according to linear parallel-flow 
theory ; systematic corrections due to boundary-layer growth can be applied. 
Boundary-layer growth indeed becomes unimportant when the wavelengths are 
small. The corresponding weakly nonlinear theory in the neighbourhood of the 
neutral curve was also obtained by Hall (1982b). The significant result is that the 
nonlinearity resembles the mean field interaction of Meksyn & Stuart (1951) in that 
a dominant fundamental interacts with the mean flow and harmonic generation is 
secondary. The Gortler structure obtained is in the outer part of the boundary layer. 

In order to maintain a neutral solution in the linear problem, it was necessary that 
the Gortler number increases as the square root of the downstream distance (Hall 
1982a), but that could be interpreted as maintaining a definite variable wall 
curvature downstream (Hall 1982 b).  Apparently, in the small-wavelength regime 
near the neutral curve, the rate of downstream increase of curvature must be large 
enough for the disturbance to overcome the viscous retardation effects. The weak 
nonlinearity restricts the solution to the vicinity of the neutrally stable disturbance, 
where the mechanism of Reynolds stress energy conversion from the mean flow 
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would be unimportant, in contrast to  amplified disturbances in an experimental 
situation. 

I n  the small-wavelength limit, the weak nonlinearity restrictions are removed 
and extended to full nonlinear conditions (Hall & Lakin 1988a, b ) .  The mean field 
interaction is recovered. Again the Gortler structure is in the outer part of the 
boundary layer and a downstream increase in curvature accompanies the solution. 
Inflexional mean profiles normal to the wall did not develop downstream. Hall & 
Lakin’s development of the full nonlinear solution forms the basis of linear studies 
of secondary instabilities in the form of three-dimensional wave disturbances (Hall 
& Seddougui 1989) in the spirit of the study by Davey, DiPrima & Stuart (1968) of 
instability of Taylor vortices. 

Some aspects of the analyses using small dimensionless wavelengths are helpful in 
understanding some of the main aspects of the longitudinal vorticity elements 
developing from highly amplified Gortler vortices a t  finite wavenumbers. However, 
in the main they are irrelevant to the real, observed experimental situations. Hall 
(1988) also addressed this problem by numerically integrating parabolized partial 
differential equations after making the Fourier expansion with truncation in the 
spanwise modes. Although inflexional mean velocities were obtained, the numerical 
integration was carried out with variable wall curvature, and quantitative 
comparisons with experiments for constant wall curvature were absent. In  a later 
work, Hall (1989) compared his numerical results with the experimental results of 
Swearingen & Blackwelder (1987) but obtained only qualitative agreement. Perhaps 
the reasons for lack of quantitative comparison are first the implicit weak nonlinear 
assumptions in the cross-sectional plane and secondly that his initial conditions were 
not hydrodynamically possible ones. We address the initial-condition issue in 3 3. 
Hall’s expansion of flow quantities in the spanwise nZ harmonics (where Z is the 
spanwise distance) resulted in amplitudes in X, Y (where X is the streamwise distance 
and Y normal to  the wall), retaining terms up to n = 4. Detailed measurements show 
(Swearingen & Blackwelder 1987) that  while the nonlinear development is periodic 
in Z, it is not representable by the first few sines and cosines in 2. Apparently, the 
nonlinearities are much stronger in the (Y, 2)-plane than the weakly nonlinear 
truncation in 2 could describe. The partial differential equation solution in the ( X ,  
Y)-plane emphasizes the inessential nonlinearities itl X .  The present work, obtained 
without harmonic expansions in 2, shows from the finite-difference solution that 
strong nonlinearities in the (Y, 2)-plane indeed contribute to  the strong nonlinear 
distortions of the flow and capture the flow pattern observed in experiments. The 
present work is thus intended to emphasize and bring out the essential nonlinearities 
in the (Y,Z)-plane while approximating the inessential nonlinearities in X by the 
simple time evolution. In fact, the strong nonlinearities in the (Y, 2)-plane are pivotal 
in the development of a theory that is sufficientlgr realistic to be reconciled with 
quantitative details of experimental measurements. This is the primary goal of the 
present work. 

3. Formulation and basic equations 
We formulate the nonlinear development of longitudinal vorticity elements in 

terms of temporal rather than spatial development. The nonlinear streamwise 
advection is mimicked by time development, and streamwise derivatives of all flow 
quantities are absent (Stuart 1965). For incompressible flow, the absence of 
streamwise derivatives renders the continuity equation two-dimensional and a cross- 
section-plane stream function can thus be introduced. The latter, in turn, can be 
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related to the streamwise component of the vorticity. This makes possible the 
simplification of describing the nonlinear evolution in terms of only two, coupled 
nonlinear parabolic partial differential equations for the streamwise velocity and 
vorticity, instead of the original four. The parabolicity follows from the absence of 
streamwise derivatives in conjunction with time development. In the spatial 
problem, parabolicity would follow from a large-Reynolds-number approximation 
(Hall 1983). 

As in Stuart (1965), we need not perform the Reynolds splitting at the outset. 
Subsequent spanwise averaging is equivalent to such a splitting procedure, since the 
only periodicity is in the spanwise direction. In the absence of disturbances, the 
temporal mean flow problem is simply the Rayleigh-Stokes problem governed by the 
linear heat diffusion equation, whereas the spatial problem corresponds to the 
nonlinear Blasius problem for large Reynolds number. Although the one-to-one 
correspondence is absent, the temporal problem retains many of the physical 
features and hence contributes to the understanding of the spatial problem with 
considerable simplification. The temporal problem here corresponds to an ‘ Oseen 
approximation ’ applied to the nonlinear streamwise-advective derivatives. That this 
would be found to be a reasonable approximation was suggested by both 
experimental (Swearingen & Blackwelder 1987) and computational (Sabry & Liu 
1988a) indications that strong nonlinearities in the cross-sectional plane prevail over 
those in the streamwise direction In this situation, streamwise advection is 
essentially accomplished by a constant velocity. The strong nonlinearities in the 
cross-sectional plane exist in conjunction with weak streamwise vorticity and 
gradients in real flows. 

The temporal problem is that of a fluid in solid-body rotation contained in a 
rotating cylinder. The viscous boundary layer develops after the cylinder is suddenly 
stopped, while the interior fluid is still in motion. The analogy with the spatial 
boundary layer holds as long as the viscous development length 6 - (v /T)i  (where T 
is time) is small compared to the radius of the cylinder. In this case, 6/R < 1 and 
curvature effects on the viscous boundary layer itself are not important. The 
temporal problem is axially symmetric, with no circumferential derivatives of flow 
quantities. The experimental possibility of the temporal development of Gortler 
vortices is discussed by Kozlov et al. (1981) and much earlier by Fraier (1931) who 
also obtained a linear theory accounting for the growth of the time-developing basic 
flow. 

The equations of motion and of continuity for cylindrical coordinates may be 
found, for instance, in Batchelor (1967). These can be translated (Gortler 1940) to the 
corresponding orthogonal coordinate system place on the stationary wall, with X, Y ,  
2 the coordinates in the circumferential (streamwise, along the curved wall), normal 
and axial (spanwise) directions, respectively. We denote the respective velocities as 
U ,  V and W ;  P is the pressure. 

We denote a typical timescale by T, = X,/U,,  where X, would be a typical 
lengthscale in the spatial problem; U, is the ‘free-stream velocity’ and is identical to 
the circumferential velocity of the cylinder prior to its stoppage. In the thin viscous- 
layer approximation, normal and spanwise lengthscales would be then described by 
the viscous length 6, = (vT,)i. We rescale the equations of motion through the 
following dimensionless quantities (denoted by lower-case symbols) : 
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where p is the density. The appropriate Reynolds number Re here is 
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Re = U,(U, T , ) /v .  (3.2) 

In the above scaling, which is similar to that introduced by Hall (1983), V and Ware 
essentially scaled by the velocity scale p(6,/T,)2. We emphasize again that the ‘axial 
symmetry ’ implies that  derivatives with respect to x = X( Uo/T,)  do not appear. 

To order (So/R),  the dimensionless continuity and momentum equations for the 
temporal problem have the form aw aw -+- = 0, (3.3) ay a 2  

(3.5) 

where G = (U06,/u) (6,lR)f is the appropriate Gortler number, and Vi is the 
Laplacian in the cross-sectional plane, 

Although in dimensional form, Gortler’s ( 1940) original nonlinear equations, which 
form the starting point of his linear parallel-flow (i.e. boundary-layer growth frozen 
in time) studies, are equivalent to (3.3)-(3.6). I n  the temporal problem, the boundary 
layer grows in time and the growth is uniform circumferentially (or parallel in the 
streamwise direction). The longitudinal vorticity elements would develop within 
such a time-growing boundary layer. 

We make another observation before proceeding further. The Gortler curvature 
effect, G2u2, in (3.5) appears as u2/R in dimensional form. Its contribution to  the 
total kinetic energy balance is then V V I R ,  and it  is thus an ‘energy source ’. This is 
due to the neglect of -UV/R (Hammerlin’s 1955 mechanism) in the x-momentum 
equation in the scale analysis, which would contribute to  -u2V/R and effect a 
cancellation of V P I R  from the y-momentum contribution to the energy. We will see 
that when we consider numerical examples, the Reynolds shear-stress conversion 
mechanism for amplified disturbances is supplemented by the Gortler mechanism. 
The latter is required to set up the initial longitudinal vorticity system a t  finite 
Gortler numbers and wavenumbers. 

The two-dimensional form of the continuity equation (3.3) in the cross-sectional (y, 
2)-plane suggests the stream function $: 

A single equation for the streamwise vorticity 
through the definition 

is obtained from (3.5) and (3.6) 

(3.9a) 
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In the temporal system, the remaining vertical and spanwise vorticity components 
are, respectively 

(3.9b, c) 

7 and 5 can be obtained once u has been computed. I n  the velocity-vorticity system 
of dependent variables, the system (3.3)-(3.6) reduces to (in conservation form) 

(3.10) 

(3.11) 

with g = -VZ$ c *  (3.12) 

We note that (3.11), (3.12) form the usual fourth-order equation for the stream 

which, together with (3.10), constitute the reduction to two equations for u and $. 
Unlike the formulation arising from Stuart (1965), (3.10) and (3.13) are coupled 
through the Gortler curvature effect. For numerical computations, the system of three 
equations (3.10)-(3.12) is preferred. In either case, the stream function-vorticity 
formulation has the advantage of circumventing the explicit presence of the pressure 
in the dynamical equations. 

The following boundary conditions are stated for the framework (3.10)-(3.12). The 
wall boundary conditions follow from the no-slip conditions for the velocities 

y = o :  u = o ,  $ = O ,  t=- .  a2+ (3.14) 
aY2 

Far from the wall, disturbances vanish, so that 

y- too:  u = l ,  $ = O ,  t = o .  (3.15) 

For a single spanwise mode of dimensionless wavenumber a,  it is sufficient to specify 
symmetry conditions a t  the half-wavelength x / a ,  so that 

z = O , x / a :  au/& = 0, $ = 0, 6 = 0. (3.16) 

The half-wavelength symmetry condition (3.15) has the advantage of reducing, a t  
least by half, the computational effort needed relative to the full-wavelength periodic 
boundary conditions. 

The initial conditions for the temporal problem are meant to simulate the local 
upstream occurrence of Gortler vortices in the experimentally observed spatial 
problem. In this case, the initial time for imposition of the disturbance is T,/T, = 
U,/U, for the temporal problem, where U, is an advection velocity corresponding to 
the upstream condition at  X, in the spatial problem (i.e. T, = X , / U , ) ;  the 
corresponding development variables are related as (T/T,) = (X/X,) ( U,/U,). The 
shape of the initial disturbance corresponds to that obtained from the linearized 
version of (3.3)-(3.6), originally obtained by Gortler (1940) a t  the prevailing mean 
flow and Gortler number a t  X,. The initial amplitude of the Gortler streamwise 
velocity is obtained by equating its maximum spanwise root-mean-square value to 
the experimentally measured value. It first appears that, in order to compare with 
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spatial experiments, two free parameters exist, X, and U,. It is expected from 
elementary considerations that, even without disturbances, the mean flow in the 
present problem satisfies the heat equation approximately, whereas the spatial 
problem satisfies the Blasius boundary-layer equation. If the calculations were 
started too early, the mean flow would dominate and the linearized amplification 
rates due to a mean flow of the heat-equation type and of the Blasius type would be 
quite different. In  this sense the calculations must necessarily start in a region where 
the disturbances are strongly amplified and attain dominance in order to dwarf the 
difference in the mean flow effect. Only in this sense is X, no longer a free parameter 
(provided that the initial disturbance imposed is a hydrodynamically possible one a t  
the same consistent A,),  but U, remains as a free parameter. Hall’s initial conditions 
(1983, 1988, 1989), though satisfying continuity, contain no information on A,, and 
hence X, becomes a free parameter. 

In  the present problem, the initial shape of the disturbance is generated according 
to linear theory. We followed known numerical procedures (e.g. Floryan & Saric 
1982) that use the code (Support) developed by Scott & Watts (1977) for boundary- 
value problems in ordinary differential equations. 

The present Gortler vortex problem is a semi-infinite problem corresponding to an 
open flow with 6/R < 1. Curvature effects, except for the Gortler centrifugal 
mechanism, are appropriately neglected. The present unsteady boundary-layer 
formulation (3. lo), (3.11) is reminiscent of the Taylor-Couette closed-flow problem 
considered by Liu & Chen (1973). Their algorithm was used by Nikishowa (Kozlov 
et aE. 1985)t in numerical experiments (starting with initial random numbers a t  
different amplitudes) on the Giirtler vortex problem, with qualitative comparisons to 
Aihara & Koyama’s (1981) flow visualization observations. 

4. Computational procedures 
We solve equations (3.10)-(3.12) subject to the above initial and boundary 

conditions via finite-difference schemes. They are written in ‘ conservation ’ form in 
order to  give, after discretization, a better numerical representation of the net flux 
through the finite-difference element than the non-consecutive form (Thompson, 
Warsi & Mastin 1985). In  the present form (3.10) and (3.11) are two-dimensional 
parabolic and (3.12) two-dimensional elliptic. 

Because the total flow variables used here develop close to the wall and vanish 
away from the wall, a transformation of the normal coordinate y into 7 is necessary 
to accommodate a denser mesh in the wall region: 

7 = (Y-P) / (Y+P) ,  (4.1) 

where y = 0, co corresponds to  7 = f 1 and /3 is a parameter to  be specified that 
depends on the desired numerical mesh density near the y x 0 or 7 x 1 boundary. In 
this case, all y-derivatives in the problem are replaced by 

with the form of the equations remaining the same as (3.10)-(3.12). 
In  solving the system of equations (3.10)-(3.12) we followed a procedure similar to 

that suggested by Pearson (1965) and Aziz & Hellun (1967). We first guess the value 
t I am indebted to Dr 0. D. Nikishowa for this observation (private communication, Kiev 

1989). 
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of the stream function a t  the next time step via linear interpolation. Then we obtain 
the corresponding values of the streamwise velocity and the streamwise vorticity by 
solving equations (3.10) and (3.11) respectively, using the alternating direction 
implicit (API) method introduced by Peaceman & Rachford (1955). I n  general, 
implicit schemes are to be preferred because of their stability properties. However, 
we use the successive over-relaxation (SOR) method in solving equation (3.12) to  
obtain a better estimate for the value of the stream function, since SOR is an efficient 
method if an initial guess close to the solution is known. Finally, an iteration 
procedure is performed until the initial guess for the stream function agrees with the 
solution of equation (3.12). 

To check the numerical scheme, three tests are carried our: 
(i) compare the behaviour of the solution as either At, Az, or AT decreases for fixed 

values of time and normal and spanwise integration domain ; 
(ii) compare the behaviour of the solution with the case in which a decomposition 

of the streamwise velocity is used, so that u = ~ ( y , t ) + u ’ ( y , z , t ) ,  where E is the 
spanwise-averaged mean flow and u‘ the disturbance ; 

(iii) compare the integration of the linear problem with the expected linear 
growth. 

The above tests were successful and ensured the accuracy of the numerical scheme. 
It is also important to  mention that, even though the AD1 method is unconditionally 
stable in time, a large time step would cause the number of iterations to increase and 
the accuracy to  decrease. Therefore in order to obtain high accuracy as well as to  
minimize the number of iterations, we restricted our time step to not exceed that 
required by the stability condition of the explicit scheme for linear parabolic 
equations (i.e. the von Neumann condition) : 

At(Az-2+ Ay&) < t .  
The choice of a numerical mesh adequate to  reveal accurately the details of the 

flow structure is an important step in the numerical procedure. We selected our mesh 
by choosing: 

(i) the total number of grid points in the spanwise direction (17) equal to  the 
number of the different y-rake locations used in the experiment (Swearingen & 
Blackwelder 1987) to  cover half the spanwise wavelength ; 

(ii) the total number of grid points in the normal direction (201) to  cover a length 
of 506, ; 

(iii) the parameter /? = 50 in the coordinate transformation 7 = ( y - p ) / ( y + / ? ) .  
Such a choice has the advantage that both the normal and spanwise sizes of the 

mesh ( A y  and Az)  are of comparable magnitudes. As already mentioned, to obtain 
high time accuracy as well as to  minimize the number of iterations, we specifically 
restricted our time step to  be At = 6.831 x as small as the time step required by 
the von Neumann stability condition. 

I n  the SOR method, we found that a relaxation factor of 1.83 allowed fast 
convergence. 

5. Quantitative comparisons with experiments 
I n  $$ 1 and 2, we have placed the nonlinear development of longitudinal vorticity 

elements within the much broader perspective of transitional and fully turbulent, 
boundary layers, focusing on the omnipresence of local intense shear layers as the 
common basic issue. I n  order to  continue to explore the simple temporal problem, as 
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well as to render credible certain concepts derived from the present computational 
results and presented in later sections, we place particular emphasis in the present 
section on quantitative comparisons with experiments (e.g. Swearingen & Black- 
welder 1987; Ito 1985; Aihara & Koyama 1982). However, we have not carried out 
such comparisons exhaustively. The Gortler instability measurements on the concave 
side of an air foil (Dagenhard & Mangalam 1986; Mangalam et al. 1985) involve local 
changes in the surface radius. In  order to  carry out the temporal analogy to this 
problem, the radius then must be made time dependent. Although this analogy is 
certainly possible, it is felt that  for comparisons with experiments in such problems, 
the ease of a spatial calculation would be more appropriate. Gortler disturbance 
measurements were made by Petitjeans, Peerhossaini & Wesfreid (1990) in the same 
water channel as that  used by Peerhossaini & Wesfreid (1988), using laser-Doppler 
anemometry. Comparisons with their data would prove to  be of interest after more 
precise experimental conditions have become available and the sidewall effects are 
fully assessed. 

In  the comparison with spatially developing experimental measurements, we have 
already mentioned that U, is a free parameter. As it turns out in the following 
comparisons, a ‘universal’ U, x 0.644U0 appears to give the best fit with 
experimental data. The value 0.64417, is relatively close to the value of the 
streamwise velocity in the Blasius boundary layer in the vicinity of the displacement 
thickness. Conceivably this might be taken as a ‘universal’ advection speed in an 
Oseen-like approximation. However, a possible universal U, must be regarded as 
empirical a t  this stage. 

5.1. Comparison with Swearingen & Blackwelder (1987) 

Swearingen & Blackwelder (1987) used smoke-wire visualization and multiple-probe 
hot-wire rakes to  study the development of longitudinal vorticity elements on the 
concave side of a curved wind tunnel. The radius of curvature was maintained at a 
constant R = 3.20 m, with a free-stream velocity of U, = 5 m/s. The spanwise 
wavelength peculiar to  the set of longitudinal vorticity elements in which the 
detailed structural measurements were made is h x 1.80 cm. We use this value as the 
relevant one in the computations (rather than their averaged value of h % 2.30 cm). 
The’imposition of upstream initial conditions corresponds to the location X = X, = 
60 cm from the leading edge of the curved section. Tn this case, the normal, viscous 
diffusion lengthscale 8,, here defined as (vX,/U,)~, is 6, = 0.132 cm (i.e. Rexo = 
2.055 x lo5 and Reso = 453). This then gives the following dimensionless parameters 
used in the computations : Gso = 9.22, US, = 2n8,/h = 0.462. Of course, the particular 
Gortler and wave numbers based on 8, can be related to the same numbers using the 
momentum thickness (0,) or displacement thickness (8;) as lengthscales via the local 
Blasius relations 8; = 1.72088,, 8, = 0.6648,. Here, Goo = 4.99 and a0, = 0.308. 

The initial amplitude of the disturbance is fixed by the maximum value of the 
spanwise root mean square of streamwise velocity measurements (Swearingen & 
Blackwelder 1987), which at  X, = 60 cm is 0.12U0. This corresponds to an initial 
disturbance kinetic energy content across the boundary layer of about 0.0188, q. 
The comparisons between temporal development (from computations) and spatial 
development (from experiments) were carried out for an advection velocity U, x 
0.664U0. This value was chosen after different trials until good agreement with the 
experimental streamwise development was reached. 

The computations were carried out with the dimensionless form of equations 
(3.10)-(3.12), thc boundary (3.14)-(3.16) and initial conditions, although com- 
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FIGURE 1.  Comparison of the downstream development of streamwise-velocity fluctuation 
maxima: -, present computed results ; 0, experimental results for steady longitudinal vorticity 
elements (Swearingen & Blackwelder 1987) ; 0,  unsteady contributions., Computational parameters 
(correspondinso experiments), applied at X ,  = 60 cm (So = (vXo/Uo)* = 0.132 cm), R = 3.20 cm, 
Uo = 5 m/s, ( u ’ ~ ) ~ ~ ~  = 0.12Uo. 

parisons with experiments are at times given in the dimensional form in which the 
original data were presented. 

5.1.1. Maximum amplitude development 
In figure 1 we compare the development of the computed maximum disturbance 

streamwise velocity, in terms of its root-mean-square value (r.m.s.), with the 
measurements of Swearingen & Blackwelder (1987). The computed streamwise 
velocity is the total value, that is, the sum of the spanwise-independent mean 
velocity and the disturbance velocity. The mean velocity is recovered after the 
computations are performed via the usual Reynolds averaging procedure (which here 
is the spanwise average). The streamwise disturbance velocity is then obtained by 
subtracting the mean velocity from the computed total streamwise velocity. The 
r.m.s. value of the computational results is the spanwise mean. In  terms of the 
translation to the interpretation of the spatial problem, the computational results 
address only the steady longitudinal vorticity elements. 

The measured disturbance development is not entirely free from fluctuations in 
time. In this case, the time-averaged signal captures the spanwise-dependent 
‘steady ’ disturbance characteristic of spatially developing longitudinal vorticity 
elements originating from upstream Gortler vortices. The time-dependent fluct- 
uations are obtained via subtraction of the steady signals from the total. The r.m.s. 
of fluctuations involves both spanwise and time means. 

As shown in figure 1, the initial development of the steady longitudinal vorticity 
elements is the strongest, as indicated by the diamond-shaped data points from 
Swearingen & Blackwelder. Figure 1 is plotted in terms of a dimensionless 
streamwise development variable (X -X,) /R,  where X, is the location of the initial 
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condition in the computations. This emphasizes evolution from initial conditions, in 
contrast to  a plot versus the local Gortler number that still reflects ‘local ’ thinking. 
The agreement between the computational results and measurements is good, 
including the growth, peaking and decay, up to where the time-dependent 
fluctuations in the actual experiment become comparable - in the vicinity of 
(X-X,)/R x 0.134.15 (X x 105-110 cm in the experiments). 

While the computational results, which do not take into account the ‘dissipative ’ 
processes of secondary instabilities and fine-grained turbulence, indicate a ‘ satu- 
ration ’ downstream, the experimental results show the decay of the longitudinal 
vorticity elements, while the time-dependent fluctuations (indicated by squares) are 
strongly amplified owing to the appearance of local, three-dimensional inflexional 
velocity profiles (to be seen in subsequent figures). 

The steady, longitudinal vorticity system that amplifies and decays originated 
from amplified Gortler vortices in the finite Gortler-number and wavenumber region. 
The development of secondary instabilities and fine-grained turbulence from such 
strongly amplified longitudinal vorticity systems, which appear to  begin in the 
vicinity of (X-X,)R = x 0.1, has been studied elsewhere (Sabry, Yu & Liu 1989; 
Yu & Liu 1991). 

5.1.2. Streamwise velocity contours in the cross-sectional plane 

The contours of the total, steady streamwise velocity were obtained by Swearingen 
& Blackwelder (1987) by using a multiple-probe hot-wire rake. The data were time- 
averaged in order to recover the time-independent but spanwise-periodic longitudinal 
vorticity elements that  developed from upstream Gortler vortices. These elements are 
shown on the right in figure 2(a). The measurements were made over two spanwise 
wavelengths 2h ( A  x 1.80 cm), indicated by the Z-axis. The Blasius laminar 
boundary-layer thickness is indicated by So on the vertical axis, as is the viscous 
lengt hscale v/u,S, . 

The computational result for the total streamwise velocity is shown on the left of 
figure 2 ( a )  in terms of a one-wavelength domain. The computational iso-U contours 
are presented in O.lOU, increments, as are the measurements. The initial conditions 
a t  X = 60 cm show a similar spanwise structure between computationally imposed 
and measured contours. This similarity, which is quantitative, persists downstream. 
The iso-U contours described by (3.10) are advected upwards a t  the ‘peak’ region 
(2 = 0.9 cm in the computations) and downwards at the ‘valley’ (2 = 0 cm in the 
computations). Consequently, as seen in figure 2, erupting mushroom-like structures 
of low-valued U-contours develop surrounding the peak region. This is in accordance 
with the kinematic picture presented by Stuart (1965) and envisioned by Prandtl 
(1934). 

The striking resemblances hold until about X = 110 cm, where detailed hot-wire 
measurements indicate the presence of secondary instabilities and the further 
breakdown of the flow into fine-grained turbulence. These mechanisms are not 
included in the present computations. The large vertical region of nearly constant U 
in the experiments at X = 120 cm indicates the near-establishment of the turbulent 
boundary-layer profile, with remnants of the spanwise modulation. 

Consistent colour interpretations were made of the present computational contours 
and of our interpretation of the experimental contours taken directly from the paper 
of Swearingen & Blackwelder (1987). The colour-graphics interpretation of the iso- 
U contour comparison shown in figure 2(b)  (plate 1 )  complements the contour 
comparisons of figure 2 (a).  The erupting mushroom-like iso-U contours strongly 
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0 0 0 0 0 0 0 0.5 1.0 

UI  uo 
FIGURE 4. Development of U profiles in the peak region. (same conditions as figure 1 ) :  -, 
present results ; A, experimental results (Swearingen t Blackwelder 1987). Arrows indicate Blasius 
boundary-layer thickness. 

resemble the flow visualization studies of the advected-species concentration profiles 
by Aihara et al. (1985), Ito (1985) and Peerhossaini & Wesfreid (1988). 

5.1.3. Development of peak- and valley-streamwise velocity proJiles 
To bring out the details of the ‘peak’ and ‘valley’ regions, we compare in figure 

3 the computational streamwise velocity profiles in such regions with experiments 
(Swearingen & Blackwelder 1987) as functions of the vertical distance from the wall. 
The peak region, also commonly called the low-speed region, shows the development 
of inflexional, total streamwise velocity profiles because of the upwelling activity of 
the longitudinal vorticity elements. In the valley region, or the high-speed region, the 
streamwise velocity is higher near the wall because of the downwelling of longitudinal 
vorticity elements. The comparisons with experimental measurements are in good 
agreement, again, up to the vicinity of X x 100 cm where the time-dependent 
secondary instabilities and turbulence become comparable with the primary 
disturbance (see figure 1).  

The computational result is further spanwise-averaged to produce a mean flow 
that would correspond to the two-dimensional Blasius velocity profile upstream, as 
also seen in figure 3. The downstream distortion of such a mean profile to involve 
two-dimensional inflexion high-shear layers is apparent after X x 80 cm. 

In both the spanwise local structure (figure 2) and the mean profile (figure 3), it is 
clear that the inflexional profile is intensified and lifted upwards as the flow develops. 
This is more apparent in the plot in figure 4 of the peak-region profiles as they 
develop downstream. The normal distance is rescaled by the wall variables v/u,, as 
suggested by Blackwelder (1983). In this case, the inflexional region ‘propagates ’ 
rapidly out of the otherwise Blasius boundary-layer region (indicated by the arrow). 
Moreover, this propagation reaches an outer region of y+ x 250-300 by the time 
almost fully developed turbulence sets in. Again, the comparison with Swearingen & 
Blackwelder is good to about X x 100 cm. The experiments show how the intense 
high-shear layers are smoothed by secondary instabilities and fine-grained tur- 
bulence. 

In the present problem, the development of inflexional profiles and the generation 
of turbulence are non-repetitive events accomplished over an advective timescale 
(X-X, , ) /U,  normalized by the wall timescale v/u;  of the order Te - 380. This is 
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FIQURE 5. Iso-shear ( - vorticity) contours in the (y, z)-cross-sectional plane at x = 100 cm, or 
( X - X , ) / R  = 0 (same conditionf, as figure i ) ,  normalized by spanwise average of (au/ay),,II. 
Computational results are on the left, experiments (Swearingen & Blackwelder 1987) on the right. 
(a) Iso-au/ay contours, ( b )  iso-aulaz contours. 

approximately four or five times longer than the mean bursting period (Kim et al. 
1971). The shorter period of about T+ - 90 takes hold after the establishment of the 
turbulent boundary-layer profile. On the other hand, in attempts to describe 
stochastically the presence of ' coherent ' structures in turbulent boundary layers, 
Guezennec, Piomelli & Kim (1989) also observed for a counter-rotating, longitudinal 
vorticity system, the formation and propagation outwards of the inflexional 
streamwise velocity profile qualitatively similar to that shown in figure 4. Significant 
features there are shared with the present problem. 

5.1.4. Normal and spanwise vorticity contours 
We will give a full theoretical discussion of vorticity and enstrophy in $7. Here we 

compare our computed results with the measured u-velocity derivatives that 
partially characterize the overall spanwise and vertical vorticities, 5 - -&lay and 
7 - au/az, respectively. The graph on the right-hand side of figure 5(a )  is taken 
directly from Swearingen & Blackwelder (1987) for comparison. They also labelled 
the location of the edge of the unperturbed Blasius boundary layer (S), as well as the 
wall units, in terms of v/u,. The computed results, in terms of half wavelengths, are 
shown on the left-hand side of figure 5 (a ) .  The comparison is made a t  X = 100 cm in 
terms of the downstream progress of the nonlinear interactions. The iso-shears here 
and in figure 5 ( b )  are normalized by the Reynolds-averaged local wall shear (au/ay),. 
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The argument between measured and computed contours is rather good. The 
computed result captures the dimensionless magnitude ( x  0.3) of the intense 
spanwise shear in the high-shear layer and its three-dimensional location a t  about 
160v/u, and in the peak (or node) region. The behaviour of the dimensionless shear 
near the wall is also captured, ranging from very small in the peak region to more 
intense towards the valley region. 

The intense high-shear layer, carrying aulay maxima in the outer regions of the 
boundary layer, and the three-dimensional nature of the inflexional region bring 
great interest to  the study of secondary instabilities. The presence of (aulay) peaks 
is due in no small part to the amplified nature of Gortler vortices initiating upstream 
at finite wavenumbers. The high inflexional shear (in terms of au/ay) would be absent 
in the large-wavenumber limit (Hall & Lakin 1988a, b ;  Hall & Seddougui 1989). 

The normal vorticity, typified by au/az, is shown in figure 5(b) .  The experimental 
measurements (Swearingen & Blackwelder 1987) are shown on the right and the 
computattional results are on the left. Again, significant experimental features are 
captured in the computational results. The graphs are shown for the X = 100 cm 
station corresponding to the experiments ; the au/& contours are again normalized 
by 0,. The outer region peak in aulaz, located at about 150v/u,, is about out 
of phase with the peak region. There is also a peak in au/az at about 3Ov/u, in the 
vicinity of the peak region. The former corresponds to a similar region studied by 
Hall & Seddougui (1989) for secondary instabilities (in the absence of au/ay peaks in 
the interior of the boundary layer) in the large-spanwise-wavenumber limit. This is 
more akin to the study of time-dependent instabilities in Taylor-Couette flow (Jones 
1981, 1985; Davey et al. 1968). 

in the high-shear layer region are comparable. It 
is significant that  Blackwelder & Swearingen (1987) showed that the au/az peak 
distribution correlated better than au/ay with the r.m.s. of turbulence oscillations. 
These suggestions are certainly important for further studies of secondary instability 
and breakdown in the simultaneous presence of both and au/az peaks in the 
boundary layer (Sabry et al. 1989). The details leading to such intense local free-shear 
regions are discussed in $8. 

5.1.5. Displacement thickness and skin friction development 
The displacement thickness 6*, based on the total u-velocity, is computed from the 

numerical results a t  the peak and valley regions. The comparison with experiments 
(Swearingen & Blackwelder 1987) is shown in figure 6(a) .  The agreement with 
measurements is good throughout the region in which the present computations are 
valid (X x 100 em). The computations recover the observed maximum in 6* in the 
peak region, but a t  a slightly delayed streamwise location (X x 100 cm) compared to 
that in the measurements (X x 95 cm). The computational results for the valley 
region did not recover the minimum. The dominant mechanism for the max- 
imum/minimum is the further breakdown of the boundary layer and an equilibration 
of 6* for the peak/valley regions, as indicated by measurements (Swearingen & 
Blackwelder 1987). However, though converging, the experimental 6* does not 
appear to  equilibrate to the turbulent boundary-layer value, at least for this 
integrated quantity. 

The behaviour of the skin friction, which is a Reynolds-averaged quantity, is 
indicated by (au/ay) ,  and is shown in figure 6(b) .  The computational results for the 
skin friction a t  the peak and valley regions show good qualitative agreement with the 
measurements of Swearingen & Blackwelder (1987). Although somewhat displaced in 

Peak values of au/az and 
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FIGURE 6. Comparison between present computational results and experiments (Swearingen & 
Blackwelder 1987). (Same conditions as figure 1 . )  (a) Displacement thickness 6*. Present results : 
-, peak ; - - - - -, valley. Experimental results : A, peak ; 0, valley ; . . * . * , unperturbed Blasius 
boundary layer. ( b )  Shear stress at the wall (au/ay)wsl,. Present results : -, peak. Experimental 
results : A, peak ; 0, valley ; . . . . . , Blasius boundary layer ; -.- , turbulent boundary layer, flat 
plate; ---, spanwise average. 

magnitude, the maximum for the valley and the minimum in (au/ay), for the peak 
region occur in the vicinity of the measurements. After Reynolds-averaging the 
computational result, the mean skin friction appears to a large extent to  bridge the 
Blasius skin friction and the flat-plate turbulent boundary-layer value. Because of 
this, the present, greatly simplified studies of the nonlinear development of the 
relevant monochromatic component of longitudinal vorticity appear to be of 
considerably more interest than anticipated. Further studies of breakdown remain to 
be made in order to bridge the remaining gap with the turbulent boundary-layer skin 
friction. 

5.2. Comparison with It0 (1985) 
The experimental conditions of I to  (1985) correspond to  the following parameters. 
The wall radius of curvature was maintained a t  R = 1 m, the free-stream velocity 
was U, = 2.5 m/s and the spanwise wavelength of the initial Gortler vortices was h x 
1.6 cm. The initial conditions of the computations were started a t  X, = 50 cm, where 
the maximum amplitude of the streamwise velocity is 0.13U0, for which 8, = 
0.171 cm, Rex, = 0.856 x lo5 and AA = 346.5; Go? = 5.76 and a9, = 0.446 (Gd. = 
10.65, a&, = 0.672) and A A  x 345 places the initial disturbance in the amplified region 
according to  the linear theory. 

Figure 7 presents the comparison with Ito's (1985) measurements of the peak and 
valley streamwise velocity profiles. The comparison again shows good agreement in 
the nonlinear development stage of the longitudinal vorticity elements prior to their 
breakdown. The computational results again show a 'rapid ' outward movement of 
the inflexional profile in the peak region, characteristic of the uplift of the horseshoe 
vorticity system. The experiments indicate a smoothing of the inflexional profile a t  
about X x 100 cm, and this must again indicate a secondary breakdown. Further 
smoothing of the peak and valley profiles is indicated by the measurements (Ito 
1985) a t  X x 100 cm, although the peak and valley modulation is still discernible. 
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FIQURE 8. Comparison between present computational results and experiments (Aihara & 
Koyama 1982). Present results: -, peak; -----, valley. Experimental results: A, peak; 0, 
valley. C,omputational parameters (corresponding to experiments) appl iedt  X ,  = 42.5 cm (So = 
(vX,/U,)i = 0.162 cm), R = 1 m, Uo = 1.70 m/s, G,  = 7.60, aS,, = 0.636, (dZ)i, = 0.128U0. 

5.3. Comparison with Aihara & Koyama (1982b) 
Our computations began a t  the initial location X, = 30.5 cm, corresponding to 
Aihara & Koyama’s (1982 b )  experiments, for which the maximum streamwise 
velocity amplitude is 0.128U0, with U, = 1.7 m/s, R = 1 m, h x 1.6 cm, Rexo = 
3.55 x lo4, 8, = 0.162 cm. The initial Gortler and wave number parameters are G, = 
4.11, a0, = 0.422 (Gs,.= 7.60, ad, = 0.636) and A ,  = 235.6. Again, the initial Gortler 
vortex is in the amplified region. 

The comparison with our computational results is shown in figure 8. The 
development of three-dimensional inflexional profiles is again confirmed. In these 
and previous comparisons, the valley region shows a steep, high-velocity profile 
because of the downward advective motion of the longitudinal vorticity elements. 
This feature is also obtained in the kinematic calculations of Stuart (1965). The local 
steep, high-velocity region is somewhat reminiscent of turbulent boundary layers. 

6. Stream function and vorticity development 
I n  principle, the stream function $ given by (3.13) and the streamwise momentum 

equation (3.10) form a sixth-order system. The stream function is a directly 
computed quantity. I n  $5, only those quantities that were measured were shown and 
compared with experimental results. The stream-function development in the ( y ,  2) -  

plane, computed for the same conditions as those of $5.1, is shown in figure 9 (plate 
2). The rotation is counterclockwise, and the figure shows only one half-wavelength. 
The peak region is on the right of the figure and the valley on the left. The centre of 
the initial Gortler vortex is located a t  one quarter-wavelength in the spanwise location 
and a t  about the same physical distance above the wall. As the development 
proceeds, the centre is lifted upward and towards the peak region to about X x  
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100 em, a t  which time the centre tends to pull away from the peak and move towards 
the valley region. Although the secondary instabilities set in at about X x 100 ern in 
the measurements (Swearingen & Blackwelder 1987), our computational result 
nevertheless indicates a transverse ‘oscillation ’ in the ( X ,  2)-plane. How this is 
related to the observed (e.g. the flow visualization study in Swearingen & Blackwelder 
1987) transverse oscillation associated with a secondary low-frequency instability is 
not at all clear at this stage. The transverse oscillation of the ‘free vortex’ (i.e. the 
E component away from the wall) is reminiscent of the Crow instability of trailing 
vortices. 

The system (3.10)-(3.12) was actually used in the computations and the Poisson 
equation in the (y, 2)-plane gives directly the streamwise component of the vorticity 
E in terms of the stream function in the present formulation, E = -VE @. The 
streamwise vorticity component is shown in figure 10 (plate 3) as it  develops in the 
cross-sectional (y, 2)-plane. 

By definition (3.9), 5 = aw/ay-i3v/&. There is a strong 6-vorticity source from the 
wall (awlay) > 0 in the interior of the spanwise half-wavelength domain, contributing 
to the strong E >  0 in the vicinity of the wall. This is somewhat weakened 
downstream after uplift of the streamwise vorticity elements. In the interior, the 
sense of the counterclockwise rotation of the initial Gortler vortex and its subsequent 
nonlinear development in this domain give the strong E < 0 contribution. The 
rotation has the opposite sense in the next symmetrical spanwise half-wavelength 
domain. The interior streamwise vorticity system is an active one in that it 
strengthens downstream and is lifted upwards and towards the peak region. The 
subsequent migration of the streamwise vorticity peak away from the peak region 
towards the valley region is evident. The computational results actually show the 
development of two streamwise vorticity peak regions downstream : one near the 
peak region, the other near the valley region. The one near the peak region is 
subsequently weakened while the other persists and migrates towards the valley 
region. 

The total vorticity magnitude is obtained from 

52 = (62/Re+q2+C)t. (6.1) 

The Reynolds-number factor under t2 renders all magnitudes of the vorticity 
components dimensionless by the same parameters. The developing 52-contours in 
the (y,z)-plane are shown in figure 11 (plate 4). In the computational example, Re = 
Rexo = 2.055 x lo5 and typically E - O( 10). The streamwise vorticity contribution is 
about 1LJ/Re&, x 0(10-2) to a total 52 x O(1Op1). Thus, effectively, 52 reflects 
contributions primarily from (q2 + c)i. The relative weakness of the streamwise 
vorticity is also noted in experiments (R.  F. Blackwelder, private communication, 
1988). However, the nonlinear consequences of the streamwise vorticity elements are 
now shown to be enormous, both theoretically and experimentally. 

The uplift of 52 in figure 11 strongly resembles the uplift of the transverse element 
of the horseshoe vortex system in turbulent boundary-layer observations (Kline et al. 
1967; Kim et al. 1971 ; Willmarth 1975). 

Near the valley region, 52 does not change much as it develops. Near the peak 
region, however, the effect of vorticity uplift due to v is most evident. Once lifted, 
vorticity elements are further stretched in the upper regions of the shear layer due 
to divergence of w in that region. A strong region of concentrated vorticity is thus 
generated whose intensity reaches a maximum at X = 100 cm, corresponding to 
downstream development in experiments (Swearingen & Blackwelder 1987). 

21-2 
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7. Interpretations of vorticity sources : enstrophy 
In  the present temporal analogy, the streamwise advection mechanism u a l a x  is 

replaced by a/at and source mechanisms related to streamwise derivatives are absent. 
These absent source mechanisms are pointed out here, and those that remain are 
interpreted. The vortex-stretching mechanism caulax is absent in the 6-vorticity 
development (see (3.1 1)). This mechanism would be encountered in a spatially 
developing flow when the streamwise ‘ vortex lines ’ are advected downstream and 
lifted into regions of higher u in the horseshoe vortex uplift process. (We are indebted 
to J. T. Stuart for pointing out this mechanism.) The mechanism -2G2ua/az in 
(3.11), which actually comes from the combined effects of vorticity advection and 
vortex-tilting contributions to E,  can be reinterpreted as a vortex-tilting mechanism. 
In its original dimensional form 2G2u is 2U/R,  where U/R is a local particle angular 
velocity and 2U/R is interpreted as a contribution to  the spanwise vorticity; this 
vorticity is tilted towards the streamwise direction by the aCJ/aZ. 

Equations for the vorticity components 7 and 5 can be obtained similarly to (3.11) 

In the temporal analogy, the tilting mechanisms - 6 a2+/ax az and ( - 2G2u aulax + 
ga2@/axay) are absent from ( 7 . 1 )  and (7 .2) ,  respectively. The definitions of the 
vorticity components 7 and 5 are further simplified in the temporal problem, (3.9b) 
and ( 3 . 9 ~ ) .  Of course, one can, if desired, always estimate such mechanisms in terms 
of the transformation a/at = Uc a / a x .  This estimate would be more meaningful if the 
actual spatial problem were available for comparison. 

In  order further to  interpret the consequences of vorticity considerations, we split 
the total vorticity into a Reynolds mean plus a disturbance part, 

where the mean, denoted by an overbar, is obtained via spanwise averaging. 
g=c, 7 = 7 ’ ,  5=5+c> (7 .3)  

7 . 1 .  Evolution of cross-sectional enstrophy content 

In  order to understand the vorticity interactions between the mean motion and the 
spanwise-varying perturbations, it is appropriate _ _  to recast the vorticity components 
in terms of their respective enstrophy p / R e ,  qf2, c2 and c2 (see, for instance, 
Tennekes & Lumley 1972; Liu 1 9 8 8 ~ ) .  The transport equations for the enstrophy are 
further integrated in the direction normal to the wall, resulting in the time (or 
approximated streamwise) evolution of enstrophy content in the (y, z )  cross-sectional 
plane. The resulting enstrophy-content evolution equations are 

tilting tilting 
(5-1) (5-2) 

dissi ation ( 8 4 )  flux from wall 
( t - 3 )  
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stretching tilting tilting 
(7-1) (7-2) (7-3) 

-- 
1 ap 
2 a Y  

- - - lo - /om [ (z)’ + (%)‘I dy. (7.5) 

flux from wall dissipation 
(7-4) (7-5) 

exchange stretching stretching 
(5-1) (5-2) (5-3) 

tilting flux from wall dissi ation 
(5-4) (5-5) ($6) 

exchange stretching 
(5-1) (5-2) 

tibing flux from wall dissi9ation 
(5-3) (5-4) (5-5) 

The evolution of the cross-sectional perturbation enstrophies in (7.4)-(7.7) is, in 
general, dictated by the sources or sinks arising from stretching/tilting mechanisms, 
molecular flux or ‘ conduction ’ from the wall due to vorticity sources arising from the 
no-slip condition, and viscous dissipation, with the exception of 7, which has an 
enstrophy-exchange mechanism with the mean motion, r ,  given by the first term on 
the right of (7 .6)  and (7.7). This is somewhat analogous to the production mechanism 
in kinetic energy considerations. The stretchingltilting mechanisms do not give rise 
to enstrophy-exchange mechanisms. 

Equations (7.4)-( 7 .7)  are used to analyse the comprehensive numerical results 
obtained using parameters corresponding to those in the Swearingen & Blackwelder 
(1987) experiment. The details of the parameters have already been discussed in $5 .1 .  
This numerical example typifies the correspondence of parameters to observations. 

The time evolution is again recast into ( X - X o ) / R  via the Oseen or Rayleigh 
spatial transformation t +  x/Uc as in $5.1 .  The evolution of the cross-sectional 
enstrophy content is shown in figure 12. The enstrophy content associated with the 
streamwise vorticity p / R e  is an order of magnitude smaller than the normal and 
spanwise contributions, even as the perturbation amplifies ‘downstream ’. The mean- 
motion contribution dominates initially, as would be expected, since the initial 
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FIGURE 12. Development of mean flow and disturbance enstrophy content. 
(Conditions same as figure 1 . )  

4 ,  

( X I 0  
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(X- X0)IR 
FIGURE 13(a). For caption see facing page. 

perturbations are generally small. As the flow develops, the sum of the total 
perturbation contributions becomes of the same order as (though smaller than) the 
mean-motion enstrophy content. Relative to the dimensional streamwise distance 
used in the experimental comparisons in 55.1, X = 80 cm corresponds to ( X - X , ) / R  
= 0.0625, whereas 100 cm corresponds to 0.125, the distance beyond which 
secondary instabilities are experimentally observed for the present set of initial 
parameters. 
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In the following, we illustrate the relative strengths of the balancing mechanisms 
for integrated, cross-sectional enstrophy development and, for those dominant 
mechanisms, the evolution of the source or sink distribution in the cross-sectional 
plane. 

7.2. Evolution of enstrophy balancing mechanisms 
The balancing mechanisms on the right-hand sides of (7.4)-(7.7) for the respective 
enstrophy content are labelled accordingly. In  the following we present the 
individual mechanisms that give rise to the enstrophy development shown in figure 
12. 

7.2.1. Contributions to 
evolution are shown in figure 

13 (a).  With the terminology introduced in (7.4), the ‘tilting’ effect from the Gortler 
mechanism involving the mean flow ( 6 -  1) eventually dominates the sources. The 
contribution to  the (5-1) cross-sectional integral for this mechanism is shown in 
figure 13(b) as the integrand evolves from its initial distribution according to the 
(linear) Gortler vortex. This source mechanism intensifies downstream as its ‘centre ’ 
moves towards the peak region, spreads to the outer regions of the boundary layer 
and eventually fragments into intense regions (as indicated by the structure of 6 in 
figure 10). 

The ‘tilting’ mechanism arising from the disturbances u’ velocity, ( l -2 ) ,  has an 
initial zero contribution, as can be explained by the antisymmetrical behaviour of its 
detailed structure about the quarter-spanwise wavelength shown in figure 13 (c). 
However, the structure of this mechanism evolves to give a predominantly negative 
contribution to  the peak region. Again, fragmentation of the relative intense region 
is indicated as it evolves downstream in figure 13(c). 

Although the y-independent spanwise-varying flux from the wall is not shown, its 
spanwise average (6-3) is shown in figure 13(a) as an important source contribution. 
Its magnitude is initially similar to that of (6-  l) ,  but i t  peaks earlier downstream 
and decays relatively more rapidly. 

The contribution to viscous dissipation is shown in figure 13(d) .  Although initially 
such contributions are confined to the wall region, significant dissipative effects come 
into play in the peak region as the disturbance amplifies and moves downstream. The 
cross-sectionally integrated contribution is indicated by (6-4) in figure 13(a). I n  the 
region shown, the positive source contributions continue to be larger than the sink 
contributions, so that 

The cross-sectionally integrated mechanisms for 

p d Y .  

though ‘small ’ relative to the other contributions to enstrophy, continues to 
‘amplify ’. 

7.2.2. Contributions to 
is that the vertiml vorticity was found 

experimentally (Swearingen & Blackwelder 1987) to correlate strongly with the sites 
for secondary instabilities and the generation of turbulence. A study of the details of 
the sources of may well uncover the mechanism for its local intensification. As 
shown in figure 14(a), the sources for the content evolution are primarily the 
stretching and tilting mechanisms (the labelling in figure 14(a) corresponds to the 
right-hand side of (7.5)). The conduction from the wall (7-4) makes no contribution. 

The significance of the enstrophy 
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FIGURE 14(a). For caption see p. 645 
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20 

Initially the tilting of the mean spanwise vorticity c i s  important (7-2) and, as the 
disturbance amplifies, the tilting of C dominates (7-3), as does the stretching effect 
due to the upwelling in the peak region (7 - 1 ). 

The contributions to the third-order stretching (7 - 1) and tilting mechanisms 
(7 - 3) are initially antisymmetric about the quarter-spanwise wavelength, as shown 
in figures 14(b) and 14(d) respectively, and thus they initially integrate to zero. As 
they develop downstream in figures 14(b) and 14(d), they intensify towards the peak 
region. The mechanism of tilting mean vorticity [in (7-2), though finite initially, 
becomes obscured by (7-1) and (7-3)  as the disturbance becomes strongly 
nonlinear downstream. 

The viscous dissipation is finite and relatively weak initially (figure 14e), but 
develops into a localized dissipative region immediately about the peak region a t  
about y+ x 30. The overall integrated contribution, (7-5), ‘amplifies’ and 
eventually overcomes the sum of the sources, as shown in figure 14 (a), leading to the 
saturation and eventual decay of S , “ p d y  seen in figure 12. However, the p- 
enstrophy content still remains dominant over s,“ 

We point out the significant discovery here : that the stretchingmechanism 
7’ av’lay leads to the strong development and intensification of the q’2-enstrophy 
source q’2i3ti1/ay (see figure 14b) surrounding the peak region a t  about y+ x 30. 
This is precisely the region of strong vertical vorticity 7’ (figure 5 b )  in the inner- 
boundary-layer region where high-frequency secondary instabilities and eventual 
breakdown and transition to he-grained turbulence take place (Swearingen & 
Blackwelder 1987). Also significant is the observation here that the vorticity-tilting 
mechanism rav’ lay (figure 14d), which gives rise to the p-enstrophy source 
r f a v ‘ l a z ,  develops into two intense regions (though of a lesser extent than the 
stretching mechanisms). One of these regions is, again, near the peak region a t  about 
y+ x 30, and augments the intense source due to the stretching mechanism qf2 av’lay. 
The other intense region also surrounds, but is further away from, the peak region 

dy. 
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in the outer layer of the boundary layer where sites of initial, weaker secondary 
instabilities and turbulence development arise (Swearingen & Blackwelder 1987). 
These two regions correspond to the base and shoulder regions, respectively, of the 
computed and measured (Swearingen & Blackwelder 1987) mushroom-like iso- U 
profiles (figure 2). 

7.2.3. Contributions to p 
Contribution to the perturbation, spanwise enstrophy-content evolution is given 

in (7.6). It is the only contribution here - -  that exchanges enstrophy with the mean flow 
through the conversion mechanism - v f c  ag/ay. It is denoted as (g- 1)  in figure 15(a) 
and has several oscillations from positive to negative values. The evolving structural 
features are shown in figure 15(b). We can see that an intense source region is 
developed in the inner region, close to the peak. 

The dominant source for the p-enstrophy content is the mechanism involving the 
stretching of mean flow vorticity 5 by the spanwise rate of strain awf/az. This is 
denoted by (g- 2) in figure 15 (a )  ; its structural evolution is shown in figure 15 (c). As 
far as the enstrophy source is concerned, cc awf/az  attains maxima at both the inner 
and outer regions close to the peak (figure 15c). 

The accompanying stretching mechanism due to c, denoted by (g-3) in (7.6) and 
figure 15 (a) ,  also undergoes positive-negative oscillations, like (6- 1) .  Although its 
amplitude is relatively small, the cross-sectional structural features, shown in figure 
15 (d  ), point to intensification of this source mechanism surrounding the peak in both 
the outer and inner regions of the boundary layer. 

The tilting of vf  due to the shear aw'lay, denoted by (g-4) in figure 15 (a )  and (7.6), 
gives rise to a sink for the p-enstrophy content. I ts  intensification a t  the inner 
region and outer, 'shoulder' region surrounding the peak is noted in figure 15(e). 

The overall viscous conduction contribution, shown as (g -5 )  in figure 15(a), is 
again not shown here, as it is uniform in z. The overall contribution is much less 
significant than the source (5-2) and the viscous dissipation (g-6). The detailed 
structural contributions to  the latter are shown in figure 15 ( f ) .  It evolves from the 
linear Gortler contribution (figure 15f), which is symmetrical bout $, towards the 
isolated regions, with strong dissipation concentrations about the peak region in both 
the inner and outer region and about the valley in the inner region. The overall 
contribution of the integrated +C;'2-enstrophy content to the rate of viscous 
dissipation is as significant as its net source contributions. Saturation for this 
numerical example is reached at about ( X - X , ) / R  N 0.13 (figure 15a). This is also the 
vicinity where experiments (Swearingen & Blackwelder 1987) indicate that incipient 
secondary instabilities occur. 

7.2.4. Contributions to 5' 
The integrated contributions to  r2 are shown in figure 16(a). The individual 

mechanisms identified as (5-1) to (5-5)  in (7.7) are correspondingly indicated in 
figure 16(a). The exchange mechanism (c- 1 )  is just the negative of (g- 1 )  in figure 
15 (a), and its structural details follow that of (5- l ) ,  with a change in sign, in figure 
15(b). 

The stretching mechanism cc aw'/az is a mechanism shared also by and is not 
an exchange mechanism (Tennekes & Lumley 1977; Liu 1 9 8 8 ~ ) .  The details of (c-2) 
are the same as those of (5-2) in figure 15(c), with no change in sign. 

The detailed tilting-mechanism contribution indicated by (c- 3) is shown in figure 
16(b). It evolves from a predominantly negative contribution in the outer region, 



Longitudinal vorticity elements in boundary layers 649 

(b) 
0.6 . . 5 ,  

0.125 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 
0 0.05 0.10 0.15 0.: 

(X-XAIR 

-0 

4 1 %?- 
3 

Y 
6. 
- 

2 

1 

0 

9 -  
Y 
60 
- 

6 -  

3 -  

0 0.1 0.2 0.3 0.4 1 5 
ZIA 

FIGURE 16. Development of the mean flow enstrophy-content (spanwise contribution only) 
balancing mechanisms (equation (7.7)).  (Conditions same as figure 1 .) (a) Overall balancing 
mechanisms ; ( b )  structural features of E$aw'/ay, (5- 3). 
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symmetrical about in of the spanwise wavelength region, towards a dominant 
positive contribution in the inner region surrounding the peak. The overall behaviour 
evolves from an initially slightly negative contribution (figure 16a) towards a 
positive contribution of similar magnitude to the stretching mechanism (c- 2). The 
details of both the conduction (c-4) and viscous dissipation contribution ( c - 5 )  are 
not shown, since they have no spanwise variations. The former is a weak 
contribution ; the dissipative effects of the latter are concentrated in the inner region, 
as would be expected and make a dominant contribution in the evolution of %. The 
shape of 

shown in figure 12, is similar to that of the wall shear-stress evolution shown in figure 
6 (b). 

8. Effects of initial conditions 
The recognition of the Gortler vortex problem as an initial-value problem in real, 

developing boundary layers (Hall 1983) certainly suggests the possibility of 
controlling the flow development via initial conditions. This is reminiscent of the 
situation in free shear flows where a similar recognition (Liu 1971, 1974) led to many 
conceptual ideas for its control (e.g. Liu & Kaptanoglu 1987, 1989; Nikitopoulos & 
Liu 1990). 

In  this section we give a brief discussion of the effect of ‘initial’ conditions. The 
consequential results are presented in terms of (i) the development of total 
streamwise velocity contours in the cross-sectional plane (the quantitative and 
qualitative effects of such contours would be measurable) ; (ii) the cross-sectional 
stream function (though not measurable, its gradients are related to V ,  Wand 6 ) ;  (iii) 
the skin friction a t  the wall (also measurable). 

We use the numerical example of $5.1 as a standard case to which variations of 
initial conditions and parameters are compared. The numerical computations are 
carried out for the same Reynolds number, Rexo. This implies that the initial 
conditions are applied a t  the same streamwise station. We recall that the 
dimensionless initial streamwise distance Xo/So,  because of the definition of So, is just 
Re20. Thus, comparisons between cases of different initial amplitudes, Gortler 
numbers and wavenumbers are for disturbances imposed at the same initial location 
and thus are meaningful for such parameter variations. The advection velocity U, 
used in the translation between the time-dependent numerical computations and 
spatially developing flows remains 0.6S4U0, as in the comparisons of different sets of 
experiments in $5.  The variation of initial parameters are tabulated in table 1. 

8.1. Initiated Gortler vortices developing on a straight wall 
I n  the apparatus of Peerhossaini & Wesfreid (1988) and Peerhossaini (1984, 1985), 
longitudinal vortices persisted well into the straight section of the water channel 
(J. E. Wesfreid personal communication, Paris 1988). This certainly suggests that the 
longitudinal vorticity elements developing from initial Gortler vortices cannot be 
described by a local theory but must be characterized by a ‘rate-controlling’ non- 
equilibrium process that is, as already emphasized, dependent on the initial 
conditions. The non-equilibrium process here is simply the imbalance between energy 
supply from the mean motion and viscous dissipation. 

The relevant parameters of this straightened-wall case, denoted as Case 1,  are 
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- 
A ,  coo 4 l  [ ( U ' * / W L  

Standard case 460 5.01 0.308 0.12 

Case 1 460 5.01 0.308 0.12 

Case 2 230 2.51 0.308 0.12 
Case 3 460 5.01 0.308 0.03 
Case 4 460 5.01 0.308 0.48 
Case 5 1300 5.01 0.154 0.12 

(85.1) 

(but 0 in conservation equations) 

TABLE 1 .  Initial parameters 

listed in table 1.  Thus G is set to zero in the conservation equations ( A A  = 0 is 
implied). The initial conditions are imposed at  the same dimensionless 'streamwise ' 
station Xo/d0 =Reba. Thus Rexa is kept constant here (and in all other cases). 

The development of the dimensionless total streamwise velocity contours is shown 
in figure 17. Although the gradient becomes slightly steeper in the valley region, the 
development of the mushroom-like structure near the peak does not occur. In fact, 
the gradients decrease near that region. In the range of ( X - X , ) / R  shown, it is 
unlikely that sites for secondary instabilities would be present, in contrast to similar 
profiles of $5.1. 

Of interest is the development of the cross-sectional stream function shown in 
figure 18. We note that there is very little change in the location of the $ = 1 
boundary throughout the flow development. However, inside to this $ N 1 boundary, 
the stream function (and its gradients) are deintensified, leading to a weakening of 
V ,  W and 6. There is practically no shift of the location of @max towards the peak. 
Such a shift, and the accompanying development of mushroom-like structures, are 
features of the strong nonlinear processes, as in $5.1, which are absent in the G = 0 
situation. 

The corresponding &/ay at the wall is shown in figures 19 ( a ) ,  and 19 (b )  for the 
valley and peak regions, respectively, normalized by the spanwise averaged value a t  
( X - X , ) / R  = 0. In the valley region, the value of the shear stress at  the wall is 
considerably decreased from its high value in the standard case, due to a weakened 
downwelling V.  In the peak region, where the standard case exhibits a weakened 
shear stress, the G = 0 case shows a slight relative increase; this is because of the 
weakened V in the upwelling process. 

In this numerical example, even when the centrifugal mechanism is removed, the 
initial amplified disturbance is apparently still able to maintain itself through the 
Reynolds shear-stress energy conversion mechanism from the mean flow, but is 
eventually and gradually overcome by the mechanism of viscous dissipation. We 
observe that in a flow visualization, if dye (in water) or smoke (in air) were trapped 
in the outer regions of a longitudinal vorticity system, such a system would appear 
to persist, and might possibly mask the deintensification (or intensification) within 
the outer boundaries, a possibility that emphasizes the role of detailed quantitative 
measurements. Nevertheless, the persistence of longitudinal vortices on a straight 
wall, following their initiation as initially amplified Gortler vortices, make the latter 
an attractive arrangement of forcing longitudinal vorticity elements in boundary 
layers (Yurchenko 1981 and personal communication, Kiev 1989). 
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FIGURE 17. Developing of iso-U contours in the (y, 2)-plane. Initiated Gortler vortices 
developing on straight wall. (Conditions correspond to Case 1 ,  table 1 . )  

8.2. Effect of decreasing the Gortler number 
In the previous section (Case l ) ,  the Gortler number G, - R-i was decreased to zero 
by attaching an ' infinite-radius ', flat wall after the initiation of the Gortler vortices ; 
correspondingly, A,  - R-i also became zero. In the present Case 2 (see table 1) the 
initial Gortler number is decreased from 5.01 to the finite value of 2.51 and A,  is 
decreased from 460 to 230 while keeping all other parameters fixed. Case 2 is still 
in the amplified region according to the linear parallel-flow theory (e.g. Floryan & 
Saric 1982). The development of constant-streamwise velocity contours in the cross- 
sectional plane is shown in figure 20. Although the stream-function contours are not 
shown here, their development is similar to but milder than in the standard case of 
$5.1. Thus the mildly amplified structure gives rise to incipient mushroom-like 
structures in the region computed in figure 20. The corresponding shear stress a t  the 
wall in the valley and peak regions are shown in figures 19 ( a )  and 19 (b) .  There is very 
little difference from the G, = 0 case in the peak region, and only a slight difference 
is noted in the valley region. Both cases show a significant decrease in skin function 
compared to the standard case. 
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FIGURE 18. Stream-function development in the (y, 2)-plane. 
(Conditions correspond to Case 1 ,  table 1 . )  

8.3. Effect of decreasing the initial disturbance amplitude 
In Case 3,  the initial maximum linear Gortler vortex amplitude is decreased by a 
factor of four to ( (u '~/U$)  x 0.03 (see table 1).  Because the other initial parameters 
are the same as in the standard case, the amplification is expected to be relatively 
more vigorous than the decreased Gortler-number cases of sQS.1 and 8.2. Because of 
the initial small amplitude, however, the curvature in the initial total streamwise 
velocity contour (figure 21) is barely noticeable, in contrast to that for the previous 
cases (figures 17, 20). However, because of the relatively larger G, and AA,  the 
development (figure 21) is relatively more vigorous and, for the same ( X - X , / R ) ,  the 
present case with lower initial amplitude but larger G, attains a similar nonlinear 
state (figure 21) as the case with relatively larger amplitude but smaller G, (figure 
20). The II. contours, not shown, exhibit amplification in ( X - X , ) / R ,  expansion to the 
outer region of the boundary layer and migration of II.max towards the peak. 

The valley- and peak-region shear-stress development is shown in figures 22 (a )  and 
22(b). There is an appreciable reduction of shear stress in the valley region (figure 
22a) due to the mild downwelling effect for the lower-initial-Go0 disturbance. 
Correspondingly, the weaker upwelling in the peak region is not sufficient to decrease 
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FIGURE 19. Streamwise velocity derivatives at the wall. (Conditions correspond to Cases 1 and 
2, table 1 . )  -, Standard case; ---, Case 1 ; . . . . . , Case 2. (a) At the valley, ( b )  at the peak. 
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FIQURE 20. Development of iso-U contours in the (y, z)-plane : the effect of decreasing the 
initial Gortler number. (Conditions correspond to Case 3, table 1.)  
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FIGURE 21. Development of iso-U contours in the (y, %)-plane: the effect of decreasing initial 
disturbance amplitude. (Conditions correspond to Case 3, table 1 .) 
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FIGURE 22. Streamwise velocity derivatives at the wall. (Conditions correspond to Cases 3 and 
4, table 1.)  -, Standard case; * * . , Ctme 3 ;  -----, Case 4. (a) At the valley, ( b )  at the peak. 
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'-1 0.0625 

FIQURE 23. Development of iso-U contours in the (9, 2)-plane : the effect of increasing initial 
disturbance amplitude. (Conditions correspond to Case 4. table 1 .) 

the streamwise momentum there, thus giving rise to  a higher shear stress (figure 22 b )  
in the major development region in ( X - X , ) / R .  

8.4. Effect of increasing the initial disturbance amplitude 
In  Case 4, the initial [(U'")i/Uolmax is increased to 0.48 (see table l),  a factor of four 
over the standard case and a factor of sixteen over Case 3. Because of the extreme 
increase in the initial amplitude, a small region of negative total-streamwise velocity 
appear in the peak region az w x (figure 23) and is also manifested in the skin friction 
a t  the peak (figure 22a). However, this small negative region is very quickly 
obliterated in the nonlinear development. The vigorous initial amplitude leads to the 
much more rapid (relative to the standard case) development of mushroom-like 
structures in the constant-streamwise velocity contours (figure 23). The rapid 
development leads to  an overshoot of the skin friction in the valley region (figure 
22a), and also eventually in the peak region (figure 22b). 

8.5. Effect of decreasing the initial wavenumber 
I n  Case 5 the initial wavenumber is decreased by a factor of two from 0.308 to 0.154. 
Correspondingly, A ,  is increased from 460 to 1300 (see table 1) .  According to the 
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FIGURE 24. Development of iso-U contours in the (y,z)-plane: the effect of increasing initial 
Gortler wave number. (Conditions correspond to Case 5, table 1.)  
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FIGURE 25. Streamwise velocity derivatives at the wall. (Conditions correspond to Case 5, table 
1 . )  (a) At the valley, ( b )  at the peak. 
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FIGURE 26. Development of spanwise averaged ‘skin friction ’ (aU/aY)/(aU/aY),o: the effect of 
parameter variations. (Conditions given in table 1 : the numbers represent case numbers and SC 
refers to the standard case.) 

linear parallel-flow theory (e.g. Floryan & Saric 1982), amplification rates for our 
initial disturbances (denoted by u with a subscript corresponding to our case 
numbers and SC referring to the standard case) are such that vsc (=  u3 = u4) > 
u5 > v2 > ul. Thus, for the same initial amplitude, the present Case 5 is expected to 
develop more vigorously at the outset than Cases 2 and 1. This is indeed the situation 
in terms of the constant-streamwise-velocity contours in figure 24 : the vigorous 
development led to  the development of mushroom-like contours similar to the 
intermediate stages of the standard case at ( X - X , ) / R  = 100. I n  terms of the effect 
on skin friction, figures 25 ( a )  and 25 ( b )  again show a significant decrease in the valley 
region, whereas there is little change up to  ( X - X , ) / R  - 0.10 in the peak region. 

8.6. S k i n  friction 
The qualitative/quantitative effects of the initial parameters are best summarized in 
terms of the spanwise-averaged skin friction. Here it is normalized by its value a t  
( X - X , ) / R  = 0, and is shown in figure 26; the standard case and the laminar and 
turbulent skin friction are also shown for comparison. The standard value, 
equilibrating towards the turbulent skin friction, has already been compared with 
experiments (figure 6 b) .  

The increase in initial amplitude, Case 3, the standard-case and Case 4 in ascending 
magnitude, brings the transition process closer to ( X  -X , ) /R  = 0. This is consistent 
with and expected from nonlinear analyses of developing free shear flows (e.g. Liu 
1988a). The overshoot for large initial amplitude (Case 4) is quite spectacular. It is 
likely, however, that secondary instabilities would have developed earlier in this case 
than in SC, thus eroding the overshoot. Such secondary instabilities, resulting from 
initially strongly amplified Gortler vortices, still remain to  be studied, although some 
progress has been reported (Sabry et al. 1989; Yu & Liu 1991). 

The effect of decreasing the initial amplification rate (according to the linear, 
parallel-flow theory for the initial disturbances), is seen by comparing the standard 
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case and Cases 5 and 2 in decreasing order. Case 1 is special, and involves 
straightening the wall after initiation of the disturbance. The skin friction decreases 
in values as it develops in (X - X , ) / R  with decreasing initial disturbance amplification 
rates (a, < a5 < asc). Case 1 shows an eventual decrease in skin friction after an 
initial overshoot compared to Cases 2 and 5 (but not the standard case). 

9. Further discussion : sites of secondary instabilities and transition to 
turbulence 

The present contribution is intended to elucidate many facets of the nonlinear 
development of a longitudinal vorticity system in a laminar boundary layer 
undergoing transition. The initial disturbance with properties of linear Gortler 
vortices is used as a convenient and appropriate prototype for the study. Thus the 
dominant nonlinear stage in experimentally observed spatially developing situations 
is one of steady flow with a robust (once established) spanwise wavenumber. This 
observation made it possible to  simplify the problem into a quasi-two-dimensional 
computation involving the cross-sectional plane, with time taking the place of the 
streamwise distance. The velocity components involved in the nonlinear development 
are, of course, fully three-dimensional. 

The quantitative comparisons with the structural aspects of experiments in $ 5 ,  
which appear to  be the first such comparisons for problems associated with Gortler 
vortices, lend considerable credibility to the use of computed results for the steady 
nonlinear development as the vehicle to study secondary instabilities and turbulence 
generation. Secondary instabilities of the nonlinearly evolved longitudinal vorticity 
system are reported elsewhere (Sabry et al. 1989; Yu & Liu 1991). The present work, 
however, addresses the sites of such secondary instabilities. The latter correspond, 
for instance, to  the contours of the r.m.s. streamwise velocity associated with the 
time-dependent oscillations of predominantly 130 Hz frequency content in 
Swearingen & Blackwelder’s (1987) measurements. The sites of such secondary 
instabilities are well correlated with sites of intense constant aU1a.Z contours in the 
cross-sectional plane. Similar contours are also obtained from the present 
computational results (§$5  and 7). I n  fact, the mechanism leading to the formation 
of intense aU1a.Z sites (on either side of the shoulders of the mushroom-like, 
nonlinearly developed, constant-U contours in the outer layer, and on either side of 
the base of the mushroom in the inner region) is believed to be the stretching and 
tilting mechanisms associated with the sources of the vertical vorticity 3’ and its 
enstrophy hT, as discussed in $7 .  It is, of course, obvious that the amplitude of the 
vorticity is just the r.m.s. of twice the enstrophy. Such quantities, and the balancing 
mechanisms leading to vorticity and enstrophy evolution, can be measured (Balint, 
Vukoslavcevik & Wallace 1988) with vorticity probes, and the probe size will be the 
limiting and filtering factor of the eddy sizes involved. The prospects of controlling 
flow dcvclopment discussed in $8 through the control of initial parameters, and 
control of the sites of secondary instabilities and turbulence generation are a goal 
toward which continued studies would be most productive. 
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